Thursdays Webinars EuroBloodNet:

Hereditary Stomatocytosis

Immacolata Andolfo, PhD
University of Naples, Federico II
CEINGE, advanced biothecnologies
ERN-EuroBloodNet subnetwork: Red blood cell defects
Naples - Italy

Conflicts of interest

I have nothing to disclose

Learning objectives of the webinar

Hereditary stomatocytosis (HSt)

> Wide spectrum of inherited hemolytic disorders in which the red cell membrane cation permeability is increased (cation leak)
$>$ The cation leak results in deregulation

Normal Erythrocyte

Stomatocyte of cellular volume, which leads to morphological abnormality of RBCs (stomatocytes, RBCs with a stoma across the center, at peripheral blood smear)
> The clinical presentation of HSt is highly variable: variable expressivity

$>$ Genetic and allelic heterogeneity

Hereditary stomatocytosis (HSt): classification

Syndromic

- Stomatin deficient cryohydrocytosis with mental retardation, seizures, hepatosplenomegaly (GLUT1)
- Phytosterolemia non-leaky stomatocytosis with macrothrombocytopenia (ABCG5; ABCG8)
- Dehydrated Hereditary Stomatocytosis (DHS1) with perinatal edema and/or pseudohyperkalemia (PIEZO1)

Reference

 Network complex diseases
Syndromic HSt: Stomatin deficient cryohydrocytosis

European Reference Network
for rare or low prevalence complex diseases

Diseases (ERN EuroBloodNet)
\checkmark It is a rare form of stomatocytosis associated with a cold-induced cation leak, hemolytic anemia, hepatosplenomegaly, cataracts, seizures, mental retardation, and movement disorder.
\checkmark It is caused by mutations in SLC2A1 gene, that codifies for the GLUT1 transporter (associated with both loss of glucose transport and a cation leak). Autosomal recessive inheritance.
\checkmark It is characterized by lipid metabolic disorder, stomatocytic hemolysis, and macrothrombocytopenia.
\checkmark They showed normal erythrocyte cation content.

\checkmark The causative genes are: ABCG5 and ABCG8, that codify for two ATP-cassette transporters that mediate efflux of dietary sterols from the small intestine. Autosomal recessive inheritance (ABCG5/ABCG5; ABCG8/ABCG8; ABCG5/ABCG8).
\checkmark Incorporation of sterols into RBCs and platelets results in abnormal morphology and function.

l					
Table 2. Serum Sterols Levels of Phytosterolemia Patients in 3 Families					

Hereditary stomatocytosis (HSt): classification

Non-Syndromic HSt: Overhydrated Hereditary Stomatocytosis

\checkmark OHS is characterized by anemia of a variable degree with macrocytosis, low MCHC, and a right shift of the osmolarity curve at ektacytometric analysis
\checkmark It is characterized by an increase in the monovalent cation leak also associated with the absence of stomatin
\checkmark It is caused by mutations in the ammonium transporter RHAG (autosomal dominant inheritance)
\checkmark At peripheral blood smear we can observe more than 20\% of stomatocytes

Thursdays Webinars

Non-Syndromic HSt: Cryohydrocytosis

\checkmark Cryohydrocytosis is characterized by increased permeability to $\mathrm{Na}+/ \mathrm{K}+$ cations at low temperatures $\left(0-4^{\circ} \mathrm{C}\right)$.
\checkmark It is a mild hemolytic anemia due to a minimal cation leak.
\checkmark Its pathophysiology has been linked to missense mutations in the SLC4A1 gene that encodes the band 3 protein.
\checkmark These substitutions convert band 3 from an anion exchanger into a cation $-2-2$ channel, which is a pathogenic mechanism entirely different from the loss-offunction mechanism that causes hereditary spherocytosis.

Non-Syndromic HSt: Familial Pseudohyperkalemia

\checkmark Dominantly inherited genetic trait
\checkmark Characterized by a temperature-dependent, in vitro, loss of K^{+}cation from red cells
\checkmark Plasma $[K+]$ was increased when measured in blood stored at or below body temperature
\checkmark The patients show alterations in MCV
\checkmark Missense mutations in ABCB6 gene were identified in FP
European
Reference
Network
for rare or low prevalence complex diseases

		ABCB6 patients FP
Number of patients (\%)		11 (15.1)
Gender (female/male)		$\begin{gathered} 10(90.9) / 1 \\ (9.1) \end{gathered}$
Onset of symptoms (years)		$\begin{array}{r} 42.5 \pm 6.6 \\ (40.5 ; 8) \end{array}$
Age of diagnosis (years)		$\begin{array}{r} 47.1 \pm 5.6 \\ (43.5 ; 8) \end{array}$
Blood count		
	Refrange ${ }^{\text {c }}$	
$\mathrm{RBC}\left(10^{6} / \mu \mathrm{L}\right)$	3.9-5.6	$\begin{aligned} & 3.6 \pm 0.4(3.8 ; \\ & \text { 11) } \end{aligned}$
$\mathrm{Hb}(\mathrm{g} / \mathrm{dL})$	11.0-16.0	$\begin{gathered} 13.5 \pm 0.4 \\ \quad(13.1 ; 11) \end{gathered}$
Hct (\%)	$33.0-45.0$	$\begin{gathered} 42.6 \pm 1.3 \\ \quad(42.0 ; 11) \\ \hline \end{gathered}$
MCV (fL)	70.0-91.0	$\begin{gathered} 101.3 \pm 2.3 \\ (100.2 ; 11) \end{gathered}$
$\mathrm{MCH}(\mathrm{pg})$	23.0-33.0	$\begin{gathered} 31.1 \pm 0.6 \\ (31.4 ; 11) \end{gathered}$
MCHC (g/dL)	23.0-33.0	$\begin{gathered} 33.2 \pm 0.9 \\ (32.5 ; 11) \end{gathered}$
Retics count (v103/u)	-	$\begin{array}{r} 140.3 \pm 35.7 \\ \hline \end{array}$
Retics \%	0.5-2.0	$\begin{aligned} & 2.9 \pm 1.2(2.9 ; \\ & \text { 2) } \end{aligned}$

Thursdays Webinars

ABCB6 variants screening in blood donors population

\checkmark Variants in ABCB6 gene are present in healthy subjects and in blood donor population
\checkmark Storage of FP blood causes a significant increase in blood K+ levels causing problems mostly in pediatric/neonatal care, indeed several cases of whole blood transfusion in infants leading to cardiac arrest and death have been described
\checkmark Genetic test for FP could
be used to screen
potential donors of blood

Blood samples

Syndromic/Non-Syndromic HSt: Dehydrated Hereditary Stomatocytosis

Dehydrated Hereditary Stomatocytosis (DHS)

Main characteristics	$\mathrm{Hb} \downarrow \mathrm{MCV} \uparrow \mathrm{MCHC} \uparrow$		
Macrocytic anemia	Ret count $\uparrow \mathrm{LDH} \uparrow \mathrm{Hap} \downarrow \mathrm{Bil}$ (tot, ind) \uparrow Hemolysis increased risk of severe thromboembolic complications		
Splenomegaly and gallstones	$<20 \%$		Variable numbers of stomatocytes at PB
:---			
smear			

PIEZO1: physiological functions

\checkmark PIEZO1 is a mechanoreceptor (non-selective cation channel activated by several mechanical stimuli) that forms a trimeric propeller-like structure of about 900 kDa in the plasma membrane
\checkmark It plays an important physiological role in several biological processes such as regulation of urinary osmolarity, control of blood pressure, regulation of hydration and volume of erythrocytes, sensor of epithelial cell crowding and stretching, formation and development of blood and lymphatic vessels
\checkmark It is present only at a few hundred copies per RBC but functions as major determinant of the RBC hydration status

European
Reference
Network
for rare or low prevalence complex diseases

* Network

Hematological
Diseases (ERN EuroBloodNet)

Gain-of-function (GOF) mutations in PIEZO1

\checkmark Several electrophysiology studies demonstrated that the pathogenic variants cause a gain-offunction phenotype with delayed inactivation of the channel
\checkmark RBCs dehydration is due to an excessive potassium efflux and calcium influx, accompanied by further potassium efflux through the Gardos channel and osmotic efflux of water
\checkmark Other mechanisms of PIEZO1 dysfunction include altered response to osmotic stress and membrane trafficking (phenotype heterogeneity of the disease)

KCNN4: second causative gene of DHS

> KCNN4 gene encodes for the Gardos channel (KCa3.1), the erythroid Ca^{2+}-sensitive K^{+}channel
> The families described until now are few (recurrent mutations R356H, V282M and V282R)
$>$ The mutated channel showed a higher activity when compared to the wild type channel demonstrating that the mutations are gain-of-function

> Is it the same disease? "Gardos channelopathy". There are differences in cellular pathophysiology and clinical presentation

Reference
Reference
Network
for rare or low prevalence complex diseases

Rapetti Mauss et al, Blood 2015; Andolfo et al, AJH 2015,
$\%$ Network
Hematological
Diseases (ERN EuroBloodNet)

DHS phenotypes: PIEZO1 vs "Gardos channelopathy"

DHS1 - PIEZO1
DHS2 - KCNN4- Gardos

Two large cohort studies: 123 and 126 patients with HSt

Patients with PIEZO1 mutations	High-rank $(n=14)$	Low-rank $(n=15)$	P ${ }^{\text {8 }}$
Age at diagnosis (years)	17.4 ± 3.3 (17.5; 14)	24.9 ± 6.5 (20.0; 11)	0.39
Gender (Female/Male)	$4(28.6) / 10$ (71.4)	9 (60.0)/6 (40.0)	0.09
Hematological data			
Hb (g/dL)	$11.4 \pm 0.8(11.3 ; 14)$	12.6 ± 0.4 (12.2; 15)	0.30
MCH (pg)	$35.0 \pm 1.5(36.0 ; 13)$	36.5 ± 1.5 (36.0; 15)	0.84
MCHC (g/dL)	36.7 ± 1.7 (34.8; 14)	33.9 ± 0.3 (33.7; 15)	0.12
Retics abs count ($\times 10^{3} / \mathrm{LL}$)	181.3 ± 34.4 (165.6; 13)	$153.5 \pm 26.4(139.3 ; 13)$	0.57
Laboratory data, iron balance, and transfusion regimen			
Total bilirubin (mg/dL)	4.4 ± 0.7 (4.3; 14)	$2.5 \pm 0.7(1.5 ; 8)$	0.06
LDH (U/L)	333.8 ± 51.0 (315.0; 11)	232.6 ± 18.2 (242.5; 8)	0.17
Ferritin ($\mathrm{ng} / \mathrm{mL}$)	$\begin{aligned} & 720.9 \pm 129.3(626.0 \text {; } \\ & 14) \end{aligned}$	196.7 ± 57.1 (182.5; 6)	0.02
Ferritin level/dosage age ${ }^{\ddagger}$	47.2 ± 8.3 (38.4; 14)	$17.4 \pm 3.7(16.3 ; 6)$	0.01

Andolfo et al, AJH 2018; Picard et al., Haem. 2019

Thursdays Webinars

Learning objectives of the webinar

Diagnosis and therapy of HSt

Diagnostic workflow of HSt

Genetic testing of HSt in the NGS era

$\checkmark 18 \%$ of patients with clinical suspicion of congenital dyserythropoietic anemias (CDAs), mainly CDAI and II, carried mutations in PIEZO1 gene.

Differential diagnosis

$>$ DHS is often misdiagnosed, at clinical level, as hereditary spherocytosis (HS) or congenital dyserythropoietic anemias (CDAI/II)
> In several cases DHS can also be misdiagnosed as hereditary hemochromatosis
> The genetic analysis is crucial also to avoid not useful treatments as for example splenectomy
> It is important to evaluate the possible co-inheritance of

MCV \uparrow
 Ferritin \uparrow
 DHS
 LDH \uparrow Hapt \downarrow
 Bil ind \uparrow
 Splenomegaly
 $\mathrm{MCV}=$
 Ferritin $=$
 HS

Right shift ekta.
DiMax other genetic traits that could account for variability of the phenotype observed

Hypercellular bone marrow with erythroid hyperplasia (mimicking myelodysplastic syndrome) in a patient with DHS Paessler M, Hartung H. Blood. 2015

Thursdays Webinars

Standard treatment and possible future therapy

\checkmark The first-line treatment is based only on supportive care: folates, Vit.B12, transfusions, iron chelation.
\checkmark Splenectomy is contraindicated (increased risk of thrombosis).
\checkmark SENICAPOC (ICA -17043) is a Gardos channel antagonist, previously

Thursdays Webinars

Learning objectives of the webinar

Dehydrated hereditary stomatocytosis: role of PIEZO1 in RBCs

Piezo1 Gain-of-Function Mice

Constitutive Piezo1 GOF and blood-cell-specific Piezlo1 GOF transgenic mice (R2456H) showed:
\checkmark Stomatocytes at PB, reduced osmotic fragility, and splenomegaly
\checkmark Mild anemia, with lower Hb level and increased ret. Number/MCV

Gain-of-function Piezo1 mice display hallmark clinical features observed in human DHS patients, including RBC dehydration, mild anemia,

Piezo1 GOF
 RBC

European
Reference Network for rare or low pre
complex diseases

Piezo1 GOF mutations attenuate Plasmodium infection

\checkmark GOF PIEZO1 mice showed increased survival rate after infection and decreased parasitemia.
\checkmark A novel human GOF PIEZO1 allele, E756del, is present in a third of the African population.
\checkmark RBCs from individuals carrying this allele are dehydrated and resistant to malaria.

PIEZO1 activation delays erythroid differentiation and reticulocyte

 maturation in DHS1

European
Reference
Network
for rare or low prevalence
complex diseases
\% Network
Hematological
Diseases (ERN EuroBloodNet)

Learning objectives of the webinar

Hepatic iron overload in DHS1

\checkmark Severe iron overload with several cases of hepatosiderosis has been described for PIEZO1 patients.
\checkmark Hepatic iron overload is independent from the degree of anemia, the transfusion regimen, and the splenectomy
\checkmark Ferritin and ferritin/age ratio is very high in DHS1. There is a poor correlation between ferritin levels and liver iron content.
\checkmark Most of the patients with a severe phenotype (mostly with impaired iron balance) carried mutations in the pore domain, while most of the
 patients with mild phenotype exhibited variations in the non-pore domain

B

	PIEZO1 patients DHS1	KCNN4 patients DHS2
Number of patients (\%)	$36(49.3)$	$5(6.8)$

Hepcidin and ERFE dosage in DHS1 patients

(A)
(C)

(B)

(D)

\checkmark Hepcidin resulted highly reduced in DHS1 patients compared to HC and CDAll patients.
\checkmark ERFE showed a slight, but not significant, increased levels in DHS1 compared to HC.

PIEZO1 in liver: physiological role

\checkmark Intracellular calcium concentration increases after PIEZO1 activation by Yoda-1 in primary hepatocytes
\checkmark Activation of PIEZO1 by both Yoda-1 and GoF mutations cause Hamp suppression in hepatic cells

Impaired BMP-SMADs pathway in PIEZO1-GOF mutants

\checkmark HAMP gene expression is regulated by the BMP/SMADs pathway
\checkmark PIEZO1 activations leads to ERK1/2 phosphorylation in other cells

[^0] PIEZO1 was activated by Yoda-1 (1.5 1 M)

* Network

Diseases (ERN EuroBloodNet)

\checkmark PIEZO1 GOF mutants showed increased phosphorylation of ERK1/2 in hepatic cells and inhibition of BMP-SMADs pathway
\checkmark The inhibition of BMP/SMADs signaling was
The inhibition of BMP/SMADs signaling was
confirmed by the downregulation of the target genes: SMAD6/SMAD7/ID1/ID3

\checkmark The inhibition of PIEZO1 by GsMTx-4 rescued the Hamp and ID1 gene expression.

Model of pathogenic mechanism of DHS

European
Reference
Network
for rare or low prevalence
complex diseases

Proposed model: PIEZO1 regulation of hepatic iron metabolism

Hepatic cell

Take home messages

$\checkmark \quad$ HSt are a wide spectrum of inherited hemolytic disorders in which the RBC membrane cation permeability is increased.
\checkmark DHS is the most frequent condition within this class of anemias. It is an autosomal dominant hemolytic anemia caused by GOF mutations in both PIEZO1 and KCNN4 genes.
\checkmark The diagnosis of Hst is very challenging because of the presence of overlapping phenotypes, variable expressivity, allelic and genetic heterogeneity. DHS is in differential diagnosis with HS and CDAs.
\checkmark GOF mutations in PIEZO1 caused impaired erythroid differentiation and reticulocytes maturation.
\checkmark GOF mutations in PIEZO1 cause decreased Plasmodium infection.
\checkmark Iron overload in DHS1 is directly caused by GOF mutations of PIEZO1 at hepatic level by impairing of Hamp gene expression.

Acknowledgments

UOC Medical Genetics and Hereditary Anemias Research Lab University of Naples "Federico II" Ceinge, advanced biotechnologies

Prof. Achille Iolascon Roberta Russo

Barbara Eleni Rosato Roberta Marra Francesco Manna Simone Della Monica

[^0]: Camaschella C. et al., Haematologica 2020

